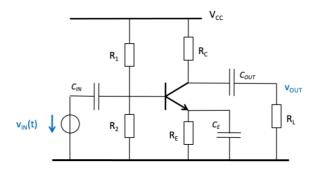
Exercices d'électronique 2 - série 02 — partie 3 : Consolidation amplification avec montages à transistors bipolaires

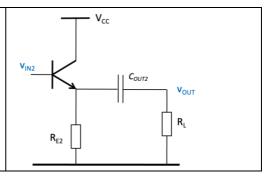
TERMINER l'exercice débuté en classe (polarisation du dernier montage sans approximation I_B négligeable)


Exercice très long:

Analyser avec la recette de cuisine en trois phases le montage ci-dessous appelé EC (émetteur commun). On notera dans ce montage la présence d'une charge R_L . Le calcul du gain se fera en deux étapes :

- Calculer le gain sans la charge
- Idem avec la présence de la charge. Vérifier que <u>le gain se dégrade</u> avec la charge

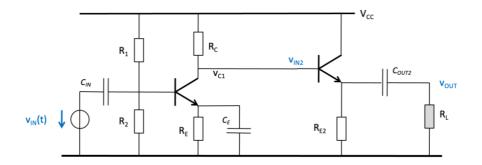
Application numérique :


 V_{CC} = 10V, R_1 = 66k Ω , R_2 = 33k Ω , R_E = 1k Ω , R_C = 1k Ω , β = 200 et R_L = 50 Ω . On suppose les capacités suffisamment grandes pour les assimiler à des courts-circuits lors de l'étude des variations

Pour <u>améliorer le gain</u>, on connecte à la sortie de l'émetteur commun un autre montage appelé CC (collecteur commun).

Attention : le collecteur du montage EC sera directement relié à la base du montage CC comme le montre le schéma cidessous (pas de capacité de découplage), ou si vous préférez, V_{C1} (montage EC) relié à V_{B2} (montage CC)

La charge est connectée à la sortie du montage CC qui se trouve sur l'émetteur du transistor. On insère un condensateur entre la sortie et la charge.



Analyser le montage CC.

- Expliquer comment ce montage est polarisé
- Calculer les grandeurs de la polarisation
- Calculer les paramètres 1/gbe2 et gm2
- Calculer le gain sans charge puis avec charge

Application numérique : $V_{\text{CC}} = 10 \text{V}, \, R_{\text{E2}} = 100 \Omega, \, \beta = 200 \text{ et } R_{\text{L}} = 50 \Omega.$

Analyser le montage complet EC + CC avec la charge

